
A Pseudo-Random Number Generator Based on Normal Numbers
David H. Bailey

11 Dec 2004

Abstract
In a recent paper, Richard Crandall and the present author established that each of

a certain class of explicitly given real constants, uncountably infinite in number, is b-
normal, for an integer b that appears in the formula defining the constant. A b-normal
constant is one where every string of m digits appears in the base-b expansion of the
constant with limiting frequency b−m. This paper shows how this result can be used
to fashion an efficient and effective pseudo-random number generator, which generates
successive strings of binary digits from one of the constants in this class. The resulting
generator, which tests slightly faster than a conventional linear congruential generator,
avoids difficulties with large power-of-two data access strides that may occur when using
conventional generators. It is also well suited for parallel processing—each processor
can quickly and independently compute its starting value, with the collective sequence
generated by all processors being the same as that generated by a single processor.

1



Introduction
In [1], Richard Crandall and the present author established that the class of constants

αb,c =
∞∑

k=1

1

ckbck ,

where the integer b > 1 and c is odd and co-prime to b, is both b-normal and transcenden-
tal. The term b-normal (also written as normal base b) means that each string of m digits
in the base-b expansion of αb,c appears with a limiting frequency of b−m, or in other words
with exactly the limiting frequency that one would expect if the digits were generated
“at random.” Actually, the authors established normality for a much larger class (in fact,
an uncountably infinite class). But for simplicity this paper will deal with one specific
member of this class, namely

α2,3 =
∞∑

k=1

1

3k23k

= 0.0418836808315029850712528986245716824260967584654857 . . .10

= 0.0AB8E38F684BDA12F684BF35BA781948B0FCD6E9E06522C3F35B . . .16 ,

which is 2-normal. This particular constant was first proved 2-normal by Stoneham [5].
A fairly simple proof of this result is given in [2, pg. 155].

This result suggests that the binary digits of α2,3 could be used to fashion a practical
pseudo-random number generator. Indeed, this was suggested in the original paper [1].
This can be done, and the result is a generator that is both efficient on single-processor
systems and also well-suited for parallel processing: each processor can quickly and in-
dependently calculate the starting seed for its section of the resulting global sequence,
which global sequence is the same as the sequence produced on a single-processor system
(subject to some reasonable conditions).

The material that follows represents the full solution of a problem originally sketched
in [2, pg. 169–170].

2. Mathematical Background
Define xn to be the binary expansion of α2,3 starting with position n + 1. Note that

xn = {2nα2,3}, where {·} means the fractional part of the argument. First consider the
case n = 3m for some integer m. In this case one can write

x3m = {23m

α2,3} =

{
m∑

k=1

23m−3k

3k

}
+

∞∑
k=m+1

23m−3k

3k

Observe that the “tail” term (i.e., the second term) in this expression is exceedingly small
once m is even moderately large—for example, when m = 10, this term is only about
10−35,551. This term will hereafter be abbreviated as εm. By expanding the first term, one
obtains

x3m =
(3m−123m−3 + 3m−223m−32

+ · · ·+ 3 · 23m−3m−1
+ 1) mod 3m

3m
+ εm

2



The numerator is taken modulo 3m, since only the remainder when divided by 3m is of
interest when finding the fractional part. By Euler’s totient theorem, the next-to-last
term in the numerator, when reduced modulo 3m, is three. Similarly, it can be seen
that every other term in the numerator, when reduced modulo 3m, is equivalent to itself
without the power-of-two part. In other words, the expression above reduces to

x3m =
(3m−1 + 3m−2 + · · ·+ 3 + 1) mod 3m

3m
+ εm

=
3m − 1

2 · 3m
+ εm =

b3m/2c
3m

+ εm

The author is indebted to Helaman Ferguson for this proof. More generally, for n that is
not a power of three, one can write

xn =
(2n−3mb3m/2c) mod 3m

3m
+ ε,

where m is chosen so that 3m is the largest power of three less than or equal to n. In
this case, one can be assured that ε < 10−30 provided n is not within 100 of any power of
three.

3. The Algorithm
With this explicit expression in mind, an algorithm can be given for generating pseudo-

random deviates, in the form of a sequence of IEEE 64-bit floating-point numbers in
(0, 1). These deviates contain, in their mantissas, successive 53-bit segments of the binary
expansion of α2,3, beginning at some given starting position.

Initialization. First select a starting index a in the range 333+100 = 5559060566555623 ≤
a ≤ 253 = 9007199254740992. The value of a can be thought of as the “seed” of the
generator. Then calculate

z0 = (2a−333 · b333/2c) mod 333.

Generate iterates. Successive iterates of the generator can then be recursively computed
by iterating

zk = (253 · zk−1) mod 333

and then returning the values zk3
−33, which are 64-bit IEEE floating-point results in the

unit interval.

Double-double arithmetic. Several of the operations used in this scheme must be done
with an accuracy of 106 mantissa bits. “Double-double” precision arithmetic of this sort
can be implemented simply and efficiently. Here a double-double datum is represented
by a pair of IEEE double-precision floating-point numbers—the first word is the closest
64-bit IEEE value to the double-double value, and the second word is the difference. For
convenience, three key algorithms used in double-double arithmetic are given below, from

3



which a complete set of double-double arithmetic functions can be constructed [3] or [2,
pg. 218-220]. Here ⊕,	 and ⊗ denote the result of IEEE 64-bit floating-point operations.

A: Double + double. This computes the high- and low-order words of the sum of two
IEEE 64-bit values a and b.

1. s := a⊕ b;
2. v := s	 a;
3. e := (a	 (s	 v))⊕ (b	 v);
4. Return (s, e).

B: Split. This splits an IEEE 64-bit value a into ahi and alo, each with 26 bits of significance
and one hidden bit, such that a = ahi + alo.

1. t := (227 + 1)⊗ a;
2. ahi := t	 (t	 a);
3. alo := a	 ahi;
4. Return (ahi, alo).

C: Double × double. This computes the high- and low-order words of the product of two
IEEE 64-bit values a and b.

1. p := a⊗ b;
2. (ahi, alo) := split(a);
3. (bhi, blo) := split(b);
4. e := ((ahi ⊗ bhi 	 p)⊕ ahi ⊗ blo ⊕ alo ⊗ bhi)⊕ alo ⊗ blo;
5. Return (p, e).

With regards to C, note that some processors, notably IBM PowerPC and RS6000
processors and Intel IA-64 processors, have a “fused multiply-add” instruction that greatly
simplifies double × double operations. In this case, one can simply write p := a⊗ b and
e := a ⊗ b − p, and the “Split” operation is not needed. Note, however, that it is often
necessary to specify a special compiler option (such as -qstrict on IBM systems) to insure
that this code is performed as written.

Complete C++ and Fortran-90 double-double computation software packages, includ-
ing both basic-level arithmetic functions as well as common algebraic and transcendental
functions, are available from http://crd.lbl.gov/~dhbailey/mpdist.

Implementation details. The operation (253 · zk−1) mod 333 can be performed efficiently as
follows: (1) multiply 253 by zk−1 by using Algorithm C above; (2) multiply the high-order
word of the result of Step 1 by 3−33, using ordinary double precision arithmetic, and take
the greatest integer; (3) multiply the result of Step 2 by 333, again by using Algorithm
C above; and (4) subtract the result of Step 3 (which is of type double-double) from the
result of step 1, using a double-double subtraction routine. It is possible the final result
may be either negative or exceed the modulus 333, due to the fact that the result of Step
2 might be one unit too high, or one too low. This difficulty can be easily remedied by
adding 333, if the final result is negative, or subtracting 333, if the final result exceeds 333.

4



Exponentiation. The exponentiation required in the initialization may be done efficiently
using the binary algorithm for exponentiation. This is merely the formal name for the
observation that exponentiation can be economically performed by means of a factor-
ization based on the binary expansion of the exponent. For example, one can write
317 = ((((32)2)2)2) · 3, thus producing the result in only five multiplications, instead of
the usual 16. According to Knuth, this technique dates back at least to 200 bce [4, pg.
461]. In this application, the exponentiation result is required modulo a positive integer
k. This can be done very efficiently by reducing modulo k the intermediate multiplication
result at each step of the exponentiation algorithm. A formal statement of this scheme is
as follows:

To compute r = bn mod k, where r, b, n and k are positive integers: First set t to be the
largest power of two such that t ≤ n, and set r = 1. Then

A: if n ≥ t then r ← br mod k; n← n− t; endif
t← t/2
if t ≥ 1 then r ← r2 mod k; go to A; endif

Note that the above algorithm is performed entirely with positive integers that do not
exceed k2 in size.

A full implementation of the above pseudo-random scheme, which runs on any com-
puter system with IEEE 64-bit arithmetic and a Fortran-90 compiler, can be obtained
from the author’s website: http://crd.lbl.gov/~dhbailey/mpdist. The code is straight-
forward and can easily be converted to other languages, such as C or Java.

4. Analysis
It can be seen from the above that the recursive sequence generating iterates, which

contain successive 53-long segments of binary digits from the expansion of α2,3, is nothing
more than a special type of linear congruential pseudo-random number generator, a class
that has been studied extensively by computer scientists and others [4, pg. 10–26]. In
other words, the binary digits of α2,3 are “locally” (within a range of indices spanned by
successive powers of three) given by a linear congruential generator, with a modulus that
is a large power of three.

This observation makes it an easy matter to determine the period P of the resulting
generator [4, pg. 17]: as specified above, P = 2 ·332 ≈ 3.706 ·1015. Note, however, that the
binary digits of the resulting sequence will match that of α2,3 only if [a, a + 53n], where
a is the starting index and n is the number of floating-point results generated, does not
include a power of three or come within 100 of a power of three.

This scheme has one significant advantage over conventional linear congruential gen-
erators that use a power-of-two modulus: it cleanly avoids anomalies that sometimes arise
in large scientific codes, when arrays with dimensions that are large powers of two are
filled with pseudo-random data and then accessed both by row and by column (or plane),
or which otherwise are accessed by large power-of-two data strides (as in a power-of-two
FFT). This is because the pseudo-random data sequence accessed in this manner has a
reduced period as thus may be not as “random” as desired. The usage of a modulus that

5



is a large power of three is immune to these problems. The author is not aware of any
scientific calculation that involves data access strides that are large powers of three.

The algorithm given in Section 3 is designed for straightforward implementation using
IEEE 64-bit arithmetic, which features 53 mantissa bits, by means of “double-double”
arithmetic functions. But by using a different implementation scheme, for example, by
using 128-bit integer operations, an even stronger generator can be obtained. For example,
in the scheme as described above, one double-precision floating-point result, if it is by
chance rather small, will include as its tailing bits a few of the leading bits of the next
result. While the author is not aware of any application for which this feature would have
any material impact, it can be virtually eliminated by generating, say, 64 bits of α2,3 for
each result instead of only 53 bits. Also, a 128-bit integer implementation would permit
an even larger modulus, say 340, which yields a period that is 2,187 times larger than the
scheme defined in Section 3.

5. Performance
As mentioned above, a Fortran-90 implementation of the scheme described in Section

3 is available on the author’s website. For comparison purposes, the author implemented
the conventional linear congruential generator

zn = (521 · zn−1) mod 253,

using the same software and programming style. These two codes were then tested on
an 2 GHz Apple G5 workstation, using the IBM XLF compiler. This Apple system has
a fused multiply-add instruction, so that the critical double × double equals double-
double operation can be done with just two instructions, as mentioned in Section 3. This
hardware feature was utilized in both implementations.

The results of these tests are as follows. The program implementing the scheme in
Section 3 required 7.96 seconds to generate an array of 100 million double-precision devi-
ates. By comparison, the conventional linear congruential system required 8.20 seconds.
In other words, the normal-number based program is actually slightly faster, although
the difference in run time is minor.

6. Parallel Implementation
The scheme described in Section 3 is very well suited for parallel processing, a trait

not shared by a number of other commonly used pseudo-random schemes. Consider for
example an implementation of the above pseudo-random scheme on a distributed memory
system. Suppose that k is the processor number and p is the total number of processors
used. Assume that a total of n pseudo-random deviates are to be generated, and assume
that n is evenly divisible by p. Then each processor generates n/p results, with processor p
using as a starting value a+nk/p. Note that each processor can quickly and independently
generate its own value of z0.

In this way, the collective sequence generated by all processors coincides precisely with
the sequence that is generated on a single processor system. This feature is crucially im-
portant in parallel processing, permitting one can verify that a parallel program produces

6



the same answers (to within reasonable numerical round-off error) as the single-processor
version. It is also important, for the same reason, to permit one to compare results on,
say, on 64 CPUs of a given system with one run on 128 CPUs.

This scheme has already been exploited in a fast Fourier transform (FFT) benchmark
that is being prepared as part of the benchmark suite for the High Productivity Comput-
ing Systems (HPCS) program, funded by the U.S. Defense Advanced Research Projects
Agency (DARPA) and the U.S. Department of Energy. In this case, it is used to gen-
erate the initial data for a large three-dimensional FFT, performed on a highly parallel
computer system.

7. Conclusion
The new class of normal numbers defined above can indeed be used to fashion an

efficient pseudo-random number generator. While the generator above is designed to
replicate the binary digits of the constant

α2,3 =
∞∑

k=1

1

3k23k ,

there is no reason that other constants from this class could not also be used in a similar
way. For example, a very similar generator could be constructed by replacing “3” in
this formula with “5.” The resulting generator generates successive strings of binary
digits from the constant α2,5. One could also construct pseudo-random generators based
on constants that are 3-normal or 5-normal, although one would lose the property that
successive digits are precisely retained in separate computer words (which are based on
binary arithmetic). The specific choice of multiplier and modulus can be made based on
application requirements and the type of high-precision arithmetic that is available (e.g.,
double-double or 128-bit integer).

This construction has theoretical as well as practical utility, because it provides some
insight into why the digits of the normal numbers defined in the introduction behave
in a “random” manner—their expansions consist of successive segments of exponentially
growing length, within which the digits are given by a specific type of linear congruential
generator, with a correspondingly growing period. Such insights may ultimately lead to
other results in the field of normal numbers, such as long-sought proofs that common
mathematical constants π or log 2 are normal.

7



References

[1] David H. Bailey and Richard E. Crandall, “Random Generators and Normal Num-
bers,” Experimental Mathematics, vol. 11, no. 4 (2004), pg. 527–546.

[2] Jonathan M. Borwein and David H. Bailey, Mathematics by Experiment: Plausible
Reasoning in the 21st Century, AK Peters, Natick, MA, 2004.

[3] Yozo Hida, Xiaoye S. Li and David H. Bailey, “Algorithms for Quad-Double Precision
Floating Point Arithmetic,” 15th IEEE Symposium on Computer Arithmetic, IEEE
Computer Society, 2001, pg. 155–162.

[4] Donald E. Knuth, The Art of Computer Programming, vol. 2, Addison-Wesley,
Boston, 1998.

[5] R. Stoneham, “On Absolute (j, ε)-Normality in the Rational Fractions with Applica-
tions to Normal Numbers,” Acta Arithmetica, vol. 22 (1973), 277-286.

8


